
Journal of Mathematical Chemistry 17 (1995) 37%393 377 

Theoretical implications involved in 
the DDRP method * 

Lfiszl6 L. S tach6  

Bolyai Institute for Mathematics, Attila J6zsef University, Aradi V~rtanf~k tere 1, 
H-6720 Szeged, Hungary 

Mikl6s  I. B/m 

Institute of Physical Chemistry, Attila J6zsef University, P. O. Box 105, 
H-6701 Szeged, Hungary 

Received 5 January 1995 

The aim of this paper is to prove that safe success in finding reaction paths (RPs) can only 
be expected from global path-determining methods. Some extensions of the mathematical 
arguments leading to the introduction of the DDRP (dynamically defined reaction path) 
method have been sketched. Four cases involving relaxation of analyticity, variability of the 
gradient field, minimum energy (reaction) paths (MEPs) and "golf pocket holes" on the poten- 
tial energy surface ~ES), and the rather strange consequences of the main theorem of the 
DDRP method giving a rigorous mathematical basis to chemical intuition in reaction kinetics 
have been discussed. The discussions show that the DDRP method- when changing the condi- 
tions and parameters - may, in essence, involve all other global methods. It has been shown 
that the DDRP method works in a stable way even for non-analytic though smooth energy 
functions; moreover, the gradient field can be replaced by other vector fields resulting in better 
convergence to the reaction path. As a by-product, the question of the existence of MEPs can 
safely be handled and golf pocket holes are constructed on the PES in order to prove that local 
methods have chance to search faithfully the RPs in complicated systems only if the energy 
function can be restored from its arbitrarily small pieces. 

1. I n t r o d u c t i o n  

Or ig ina l ly  a n  intrinsic reaction coordinate ( IRC)  [1] was  de f ined  as a piecewise  
s m o o t h  c u r ve  on  the  po t en t i a l  ene rgy  sur face  (PES)  j o in ing  two  local  m i n i m a  w h o s e  
t a n g e n t  v e c t o r  is a lways  o r t h o g o n a l  (in mass -we igh t ed  c o o r d i n a t e  sys tem)  to  the  
e q u i p o t e n t i a l  c o n t o u r  l ines o f  the  PES.  This  m e a n s  tha t ,  d en o t i n g  the  p o t en t i a l  
e n e r g y  f u n c t i o n  by  U : ]R n ~ IR, a cu rve  c : [a, b] --~ Nn b e tw een  two  local  m i n i m a  a 
a n d  b o f  U is an  I R C  i f  a n d  on ly  i f  

* This work was presented in parts at the 8th International Congress of Quantum Chemistry, Prague, 
Czech Republic, June 19-23, 1994; Addendum to the Book of Abstracts of the 8ICQC: P/I-129. 
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_~sC(S = A(s)VU(c(s)) (se(a,b)) (1) 

for some scalar function A : (a, b) ~ IlL Notice that this concept is independent of 
parametrization and only depends on the level set structure of U. This latter obser- 
vation has not yet been exploited on its merits. 

In a series of papers [2-7] we have proposed a new curve variational method 
called the D D R P  (dynamically defined reaction path) method which is numerically 
very stable in comparison with other global applications [8-13] of steepest descent 
path (SDP)-following methods. The theoretical basis of the D D R P  method is the 
following mathematical fact (see Theorem 2.1 in ref. [2] and Theorem 2.2 in ref. 
[3]): If the potential function U is coercive and analytic with finitely many nonde- 
generate stationary points which are all of Siegel type then, for any piecewise analy- 
tic curve c : [0, 1]-+ N n, the curves [exp(-tV U)]c converge in Hausdorff  distance 
to some IRC joining two stationary points. Moreover (see Proposition 3.10 in ref. 
[3]), there is a reparametrization C t : [0, 1]--~I~ ~ of the curves [exp(-tVU)]c such 
that, for some finite sequence 0 = so <Sl < . . .  <SN = 1 of parameters, the points 
Ct(si) converge to stationary points of U and all the derivatives of C t converge 
locally uniformly to those of some IRC-piece in the intervals (si, si+l) as t--~ oe. It 
has already been illustrated by some practical examples [2,4] how this theorem can 
be used to achieve numerical procedures for calculating IRCs joining two given 
local minima of U even if the gradient field admits several bifurcations and the 
coercivity hypothesis fails. It can be conjectured that these methods work well even 
if the stationary points are degenerate or not of Siegel type although the conver- 
gence may be very slow in the former case. 

In this paper we shall be concerned with some theoretical consequences of the 
mentioned theorem which give a rigorous mathematical background to some facts 
used intuitively in chemical practice and which may lead to several variants of the 
method. 

2. D i scuss ion  

2.1. R E L A X I N G  ANALYTICITY 

Formally the D D R P  method can be applied to any potential function U with 
continuous gradient. Although the mathematically rather technical assumption of 
analyticity of U seems to be very natural even from the view point of a practicing 
chemist it may be important to know what happens if only a coercive potential 
function with continuous gradient is assumed and the requirement of analyticity is 
abandoned. 

Let U e el(II~ n) and suppose that I U(x)l, llVU(x)lt--'  as Ilxll--'  and the set 
S := {2 : V U(p) = 0} of stationary points is finite. Consider any couple Pl, P2 e S 



joined with a continuous curve c : [0, 1]--~]R" (i.e. c(0) = p l ,  c(1) =p2) .  Then the 
above conclusion of  the theorem is still maintained in first order, i.e. the curves 
[exp( - tV U)] c converge in Hausdorf f  distance to some IRC joining two stat ionary 
points. N o w  we sketch the proof  of  this fact. 

Since the potential  U is coercive there is some closed (and hence compact)  region 
B containing the curve C := c([0, 1]) and the stat ionary points S such that  

B' := [exp( - tVU)]B  c B (t>~O). (2) 

Then B t~ c B t2 whenever tl >I t2. By the continuity of  the exponential maps, each 
phase set B t is compact.  Hence the at tractor  Boo := Nt>~o Bt is non-empty and 

dHausdorff(nt,Boo)"~O (t-"~ oo)  , 

B °o = [exp(-tVU)]Boo c B ( - c x ~ < t < o o ) .  (3) 

2.00 

Example 
We illustrate the above concepts by the model  function Us : =  -/]'e,r/=:kl [ (X - -  E) 2 

4- (y -- ~7) 2] -- (X -- 1) 3 4- (y -- 1) 3 used also in refs. [2] and [4]. In the present exam- 
ple we have chosen the square {(x, y) : Ixl, lY[ ~< 1.5} for the starting region B °. In 
figs. 1 and 2 one can see the phase regions B t for t = 0, 0.1,0.3, 1, 2.5, 10, 30, 150. 

Let us consider any point  b e B °o and write b t := [exp(-tx7 U)]b ( -oo  < t < cx~). 
Since d/d t  U(b t) = ( V  U(bt), d /dtb  t) = (x7 U(bt), -x7 U(b t) )<<. O, the bounded  func- 
tions t~-+ U(b t) are decreasing on the whole real line. Thus any sequence ti ~ (x~ 
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Fig. 1. Phase regions B t in the plane for the model function Us, starting from B ° (square). 
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(~ x .~ 

Fig. 2. Phase regions of fig. 1 embedded in the PES of Us. 

(or ti --+ - -00)  admits a subsequence (ti(k)) for which (bti(k)) is convergent and 
II v U ( bt'Ik) ) [ I - +  O. It follows that necessarily limt~ oo b t = b °o and lim/~_oo b t = b -oo  

for some stationary points too, t-oo e S  whenever bEB °°. That is, Boo is the union 
of IRC pieces of U. By compactness arguments one can see that there are only 
finitely many of these IRC pieces, say Boo = 11, . . . ,  IN .  On the other hand, from 
the facts that for any t i> 0 the curve [exp(-tV U)] Cjoiningpl withp2 is contained in 
B t and that limt~oo dHausdorff(B t, Boo) --- 0, it follows that the limit set 

I* :=  ~ :  3(ti, si)i=l,2 .... t i - - ~ o o , O < . s i < ~ l  , l im[exp( - tVU)]c ( s i  ) = p }  (4) 
l 

is compact and tangent to the gradient field of U, i.e. 

[ e x p ( - t V U ) ] I *  ~ I* ( - o o < t < o o ) .  (5) 

Furthermore, since each curve [exp(-tV U)] C (t i> O) is connected, the set I* is also 
connected. Hence 

I* = & ~  U . . . U I ~ t  , 

dHausdofff([exp(--tVU)]c,l*)--+O (t--~oo) (6) 

for some consecutive subfamily In,, ..., In, of IRC pieces of U joining Pl and PE, 
thus completing the proof. 
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2.2. NEW VARIANTS OBTAINED BY TRANSFORMING THE GRADIENT FIELD 

Notice that the virtual phases 

{[exp(- tVU)]p:  t~>0} ( p e n  n fixed) (7) 

are invariant if we replace V U with any continuous vector field of the type 

V ( p ) : = A ( p ) . V U ( p )  A ( p ) > O  i f  p ¢ S ,  V ( S )  = O .  (8) 

We have already used this idea in a special case [7,14] where we assumed the repla- 
cement of the potential function U with a function of the form g(U) (g : N--~ N) 
strictly increasing) may accelerate path-following. Knowing that the D D R P  
method is effective also in the case of a el-smooth potential U, one can show, by a 
compactness argument, the following more general fact. 

Let again ueel(N n) and IU(x)l, IIVU(x)ll oo as Ilxll o  with finite 
S := {p : VU(p) = 0}. If the function Ae C(N n) is such that A(p) >0  forp eN n and 
c : [0, 1] ~ N ~ is a continuous curve joining the stationary pointspl,  p2 e S then the 
curves 

c t := [exp(-AVU)]c (t>~0) (9) 

converge uniformly to some reaction path (RP) of Ujoiningpa withp2. 

E x a m p l e  
The function UM := x y  2 - x 3 / 3  + (x  2 + y2)2/4 has a stationary point of order 2 

(i.e. a so-called monkey saddle) at the origin. It also has three minima at the points 
(0, 1), ( -1 /2 ,  +v~/2) .  The system of RPs of U consists obviously of the three 
straight line segments joining the origin with the minima (see figs. 3 and 4). Since 
the function U is very flat around the origin (due to the stationarity of 2nd order) 
the convergence of any RP-following method based upon the direct calculation of 
- V  U becomes extremely slow. However, if we replace the vector field - V  U with 
the vector field V := -[IV g ll-l/2v g then the searching will be performed approxi- 
mately with a speed experienced in neighbourhoods of saddle points of 1st order. 
In figs. 5-8, starting from the triangle C o with vertices at the minima, we compare a 
conventional application of the D D R P  method (i.e. calculating the curves 
C t := [exp(-tV U)] C °) with the application using the field V instead of - V  U (i.e. 
calculating the curves K t := [exp(-tV)]co). In figs. 5 and 6 the curves C t and in 
figs. 7 and 8 the curves K t are shown for t = 0, 15, 30, 60, 170, 350. It is worth noti- 
cing that the components of - V  U may vanish in the computer representation in 
some small neighbourhood of the origin while V is not numerically zero at most 
points of the same neighbourhood. (Naturally, fine numerical methods are neces- 
sary to obtain exact values for the components of 37 if V U vanishes numerically.) 
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Fig. 3. Complete IRC system of the monkey saddle function UM in the plane. 
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Fig. 4. IRCs of  fig. 3 embedded in the PES of UM. 
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Fig. 5. Phase curves C t in the plane, calculated by the convent ional  D D R P  method,  up to the vir tual  
t ime t = 350. 

Fig. 6. Phase curves C t of  fig. 5 embedded in the PES of  U~.  
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Fig. 7. Phase curves K t in the plane, calculated by a square-root  modified D D R P  method,  up to the 
same virtual t ime t = 350 as in fig. 5. 
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Fig. 8. Phase curves K t of  fig. 7 embedded in the PES of  UM. 
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Remark 
It seems all known global curve variational methods have the following common 

feature. They start from some initial curve C O in the configuration space (where 
the energy function U is defined). The only information they use to transform C O to 
some RP is involved in the gradient field of U, therefore, the obtained approxima- 
tion curves 

A ~ ( T - * o o , A  ° = C o ) (10) 

should always be the subsets of the 2-dimensional (2D) surface 

S := U[exp( - tVU)]C°  
t>~0 

{c(s,t) : a<s<b,t>>.O} (11) 

if C is parametrized as C = {c(s, O) : a <~ s <~ b} and c(s, t) : = [exp(-tV U)] c(s, 0). To 
our argumentations in section 2.1, there exists a finite set 11, . . . ,  IN of SDPs or stee- 
pest ascent paths (SAPs) of U such that 

dHausdorff({c(t ,s):a<..S<..b, t>/O},IIU.. .UlN)-*'O (0--+ oo). (12) 

Let us now define 

a(r)  :=sup{0:  A'- cc ( [a ,b )  x [0, oo)) (13) 

for every index T. It follows that 

dnausdorff(Ar, I 1 U . . . U I N ) - - ' O  if and only if a(~-)---~ for r-*-oo.  

(14) 

Given a starting curve C °, it is a very important task to find methods whose lower 
parameter measuring function a(O) tends to oc as rapidly as possible. However, 
numerical experiences establish that methods with too ambitious accelerations jeo- 
pardize the convergence and numerical stability seriously. E.g. Liotard's chain 
method [8] seems to try defining the curves A ~ := {c(s, "r) : a<<.s<~b, T>~0} (so the 
same curves as the simple variant of the DDRP method) by trying to determine 
points of A ~'+* in orthogonal directions in S to the tangent of AL If the parametri- 
zation c(s, t) happens to be very smooth with small curvatures, even relatively 
large values of di may lead to satisfactory new approximations. However, this is not 
the case if, e.g., the system 11, . . . ,  IN bifurcates and then there is not known any 
good estimate by the aid of which one can keep the step parameters of the chain 
method within numerically reliable limits without requiring superfluously large 
calculations. 

The fact that the methods previously considered explore some only 2D surface 
(the surface S in the above subsection) independently of the dimension of the con- 
figuration space is extremely important. This implies namely that the numerical 
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costs of D D R P  methods do not increase quickly with the dimension of the config- 
uration space. Even for the simple D D R P  method we can give the following rough 
comparison with local (sequential) RP-following methods. If each of the curves 
C t : =  {C(S, t) : a ~< s ~< b} has a length at most A and it can be reliably represented by 
a sequence of discrete points lying in a distance ~ c consecutively then the surface 
S is explored by ~ A/e subcurves each of which is generated in an analogous manner 
to sequential methods. Therefore, even in worst cases, the D D R P  method finds 
the RP system I1 t_J... U IN at most ~ A/~ times longer time in a sequential computer 
than a local method passes through 11 U . . .  IN in its optimum functioning. Thus i f  
a ,~ A/e-foldparallellizability is available, the D D R P  method requires the same com- 
puter time as a local method does. Finally we remark that it seems to be reasonable 
to conjecture that the value of A/e increases in the order of the square root of the 
dimension of the configuration space. 

2.3. ON MINIMUM ENERGY (REACTION) PATHS 

For a long time studies focused on cases where the PES had the structure of a can- 
yon. In such investigations the potential energy function U was assumed to be dif- 
ferential-topologically equivalent to x ~ ]Ix - ell ellx + ell2 where e e R n is any unit 
vector. The behaviour of this typical model function suggested several alternative 
RP definitions which coincide with the IRC in the simplest cases. The concept of 
minimum energy (reaction) path (MEP) is particularly worth mentioning. By defi- 
nition MEP is a piecewise smooth curve joining two local minima on the PES such 
that the potential energy is locally minimal at any point of the curve along the 
hypersurface lying orthogonally to the tangent vector of the curve and passing 
through the point in question. It is easy to see that MEPs are becoming automati- 
cally IRCs if the typical sufficient condition 

d 
(H(c(s))v,  v)  >i 0 (s ~ (c~,/3),v I ~ c(s)) (15) 

is realized for c : [c~,/3]--+ ~n. Here H denotes the Hessian (second derivative 
matrix) of U and v E ~". 

It would be interesting theoretically to find reasonable conditions for the poten- 
tial function admitting MEPs between any couple of local minima. Nevertheless, 
a 2-variable pure mathematical counterexample contradicting immediately this 
ambition can very easily be constructed. Namely, a function U : ~2 __~ ]R whose 
graph is the surface of a golf area with a pocket hole on the top of a hill would be 
adequate for this purpose. Indeed, any curve leading from the bottom of this pocket 
hole to another hole anywhere on the PES passes through the convex surface piece 
around the top, thus, in this case, the sectional second derivative (H(c(s))v ,  v)  < 0 
in each direction v. As far as we know there are no chemical examples for the higher 
dimensional analogy of the golf pocket hole. However, the conformal changes of 
the catechol molecule discussed by Mezey [15] give a 2D section of the potential 
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function which is differential-topologically equivalent to the function with an H- 
shaped family of SDPs between stationary points discussed in our previous papers 
[2,4]. Here we have three consecutive saddle points (SPs) along the RP joining two 
diametrically opposit minima, and this is the only way of connecting them by a sim- 
ple curve consisting of a family of SDPs. This RP is no MEP because the starting 
direction of the second segment (leading from one of the outer SPs to the SP at the 
origin) is parallel to the eigenvector with negative eigenvalue of the Hessian. Notice 
that (in this case) a conventional method [16-18] following stepwise a SAP starting 
from a local minimum would find first a SP (as classically expected), but then the 
SDP from this SP would lead to a non-opposit minimum. Such searchings may be 
carried out also by MEP-methods as those of Schlegel [19]. The right solution for 
continuing the first SAP is to issue again a SAP from this first SP in the negative 
eigendirection of the Hessian (toward zero). Now we can see that this can only be 
successful if we use a searching for SA directions. No MEP-methods can perform 
this task since the first segment of this RP-piece is no more a MEP-piece (now). 
Having reached the SP at the origin one can continue in a similar fashion except 
that now by searching for SDPs instead of SAPs. The numerically most stable non 
curve-variational methods suggest to locate first a SP with a unique negative eigen- 
value of the Hessian and then issuing SDPs to both negative eigendirections. This 
idea goes back to that of Murrell and Laidler [20] who proved that the energy func- 
tion U assumes its maximal value along a path with minimal energy increment in 
a SP between two minima, with a unique negative Hessian eigenvalue. Neverthe- 
less, their remarkable argument does not contain any information concerning the 
existence of RP of minimal energy increment. The following mathematical example 
suggests that some kind of coercivity of U is necessary for the existence of such 
RPs. Let U : IR 3 --+ IR be the function 

U : = U 0 . P 1 . P 2 ,  where 

U(x, yl,y2) := exp((x 2 - y2 _ y2)/4) ' 

Pk(X) := 1 - e x p ( - 1 0 0 0 - l t x - e ( k ) l l ) ,  e (t) : -  (0 ,0 , ( -1 )  k) ( k =  1,2). 

(16) 

Thus the graph of the function U will be approximately that of U0 equipped with 
two golf pocket holes at the points e (1), e(:). The straight line segment {(1 - t)e (1) 
+ te (2) : 0~<t~< 1} is the only RP joining the minima e (1), e (2) with a curve passing 
through the origin where U(0) ~ 1 (>  0.99). On the other hand, the function U 
assumes values strictly < U(0) along any curve c between e (1) and e (2) and passing 
completely in the plane Y := {(0, Yl, Y2): Yl, Y2 elR}. Observe that the projection 
H : (x, Yl, Y2) ~ (0, Yl, Y2) decreases the values of U (i.e. U(Hx) <.N U(x)). There- 
fore, when looking for curves with a minimal energy increment between e (1) and 
e (2), we may restrict our attention to the plane Y. Nevertheless, the function 
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(Yl, Y2) ~-* exp(-(Y2~ + Y~2)/4) has a negative definite Hessian for yl 2 + Y~2 < 2  and 
hence U on Y behaves around the golf pocket bottoms e (1), e (2) similarly as in the 
hill-top case. Therefore minimum energy increment paths joining e(1) with e (2) can- 
not be MEPs. However, if we allow ideal points in infinity (in projective sense) we 
may really find RPs in Y with a minimal energy increment between e (I) and e(2). 
These are RPs passing very closely to the straight lines x --- 0, y2 = +1 through the 
lowest points of the brinks of the two golf pocket holes (which are really SPs with 
one negative and two positive Hessian eigenvalues). A practical way of avoiding 
infinite regions in calculations is to make the function U coercive by a perturbation 
outside some relevant domain. We may add, e.g., the function ~b(x) := (l lxll /10) 1° 
to U by which numerically almost no influence has been made on U in case of 
Ilxll ~<6 apart from making U + q~, along with its gradient, to tend rapidly to oe if 
Ilxll ~ .  In section 2.1 we have established the global existence of RPs between 
any couple of local minima for coercive analytic energy functions U with finitely 
many stationary points each of which being of first order. The proof ensures that 
the phase flow [exp(-tVU)]x of the negative gradient of the energy function U 
guides any polygon joining two given stationary points, which intersects finitely 
many times the boundaries of the catchment regions [21] of the stationary points of 
U, to some RP I. By the aid of our mathematical theorem we can immediately 
show the existence of curves with minimal energy increment which are RPs between 
any pair of stationary points of an energy function U satisfying (the not too restric- 
tive) hypothesis of the theorem. 

Indeed, let a and b be two stationary points of U and set u0 := infc max U(c) for 
all curves c joining a with b. Given any e > 0, we can find a polygon Z, between a 
and b such that max U(Z~)<u0 + e. By the theorem the curves [exp(-tVU)](Z~) 
converge uniformly to some RP I, when parametrized arclength proportionally on 
[0, 1]. The energy values decrease along the phase flow of its negative gradient, 
therefore max U(I~) <~ max U(Z,) for every e > 0. Since an RP is the union of a finite 
family of SDPs/SAPs, the energy function U takes its maximum along I, a t  some 
stationary point p~. By assumption we have only finitely many stationary points. 
Hence some sequencesp~ n (n = 1,2, . . . )  with cn --* 0 consist of all the same point say 
p*. It follows that 

max U(I~,) = U(p*) = max U(I~)<~uo, (17) 

proving that the RP I,, is a curve with minimal energy increment between a and b. 
As a corollary from Murrell-Laidler 's argument [20] one can obtain that the sta- 
tionary point p* with maximal energy value on I,, should have a unique negative 
Hessian eigenvalue. We emphasize the assumptions concerning the stationary 
points, i.e. in particular that they should be all of first order. Some authors claim 
that this latter condition is satisfied automatically in chemical situations because 
paths with minimal energy increment should always exist. This statement seems to 

1 Given any curve we can find such polygons arbitrarily close to it with the same endpoints. 
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be unproved. Note that every energy function with finitely many stationary points 
can be perturbed analytically in such a way that it can be kept arbitrarily close to 
the original energy function outside a given neighbourhood of its stationary points 
and although the stationary points of the perturbed function are the same they 
will be of higher order. Indeed, if pl, . . . ,  Pm are the stationary points of U then the 
composite function Uo~Pl,,o-.. o if'm,, (where ~Pi,, : x~--}pi + (1 - exp(llx -pill/c) 
• (X -- Pi))  has the required properties for sufficiently small c > 0. Unfortunately an 
inverse construction cannot be carried out in general without changing the number 
of stationary points. However, if we are interested only in a uniform approximation 
then some polynomial function with finitely many stationary points and suffi- 
ciently close to a given compact region is always available as a consequence of the 
classical Stone-Weierstrass's approximation theorems [22]. 

2.4. GOLF POCKET HOLES ON THE PES 

We can use the golf pocket hole construction of the above subsection to trans- 
form a given potential function U into some ~] that differs from U only on given 
small open sets in which it has new stationary points. If U > 0 (this may be assumed 
without loss of generality in our context) then 

Lr(x) :--- U(x) H # (x-p, )  ( x ~  n) (18) 
i=1 

differs from U in the neighbourhoods of radius e > 0 of the points P l, -..,  PN which 
are its new stationary (actually minimum) points where # ~ C °o (I~ n) is the (non-ana- 
lytic) golf pocket hole function 

• ( x ) : = e x p ( - ( 1 - 1 l x l l )  -2) f o r l l x l l < l ,  ~ (x ) : - -1  forllxll~>l. (19) 

We can use this remark to show that the D D R P  method is suitable in a globally 
very accurate and steady gradient following. Given an arbitrary point a we can gen- 
erate a meta-IRC issued from a as follows• Let p be the stationary point whose 
catchment region contains the point a, and let c : [0, 1] --~ IR ~ be any polygon joining 
a withp. Then making a sufficiently small golf pocket hole around a on the energy 
surface, one piece of the resulting IRC of the (by the golf pocket hole) perturbed 
energy function obtained by the D D R P  method is a small perturbation of the meta- 
IRC we are looking for. In practice we need not perturb the energy function but 
we have to add the point a to the resulting curve after each homogenization as the 
starting point of the new phase curve. Moreover, if we are satisfied with lower stabi- 
lity then it is not necessary to know even the attracting stationary point p. We 
may then start the algorithm with the modified homogenization from the trivial 
curve [0, 1] --+ {a}. In this case the algorithm works as a corrector method. From 
the previous considerations we can also see that by adding a given couple of points 
to the homogenized phase curves as new starting and end points, respectively, we 
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achieve in limit an IRC with two meta-IRC pieces connecting the two given points. 
Even though the energy surface does not satisfy our rigorous hypothesis, the above 
gradient following can be applied to find such valley bottom curves as the sinuous 
curve in Schlegel's surface [23]. 

Example 
It is well-known that for a generic positive definite quadratic energy function of 

two variables the axis of its eigenvectors corresponding to the higher eigenvalue is 
a meta-IRC while all other meta-IRCs start from the origin in the direction of the 
axis formed by the eigenvectors corresponding to the lower eigenvalue. Since 
through every point, except the origin, a unique meta-IRC passes, a local method 
cannot decide which of them should be followed if we only know that the IRC starts 
in the direction of some eigenvector corresponding to the lower eigenvalue. Indeed, 
we may multiply U by, e.g., a golf pocket hole function 

a(a,b ) :---~ ~ ( ( x - - a )  2 -]- ( y - b )  2) (x, yeI~) ,  (20) 

where ~b : ]~ -* [0, 1 ] is an increasing e°°-smooth function such that 

~b(r) = 0  for r~<0, ~b(r) = 1 for r>~0.01. (21) 

Then the modified function G(a,b) has a golf pocket hole of radius 0.1 around 
the point (a, b) and it coincides with U outside the golf pocket hole. In figs. 9 and 10 
we have considered the function (x 2 + 4y2)G(1,0) G~I1 2 x/3 I~'~4 G ,/g 2,1 4 GO, l~2 Here 

. . . . .  I , I  1 1 ) . "  
each golf pocket hole bottom IS joined to the origin by an piece which practi- 
cally does not differ from the meta-IRCs between these points and the origin. 

3. Conclus ions  

In section 2.1 we have shown that the DDRP method possesses all the properties 
and abilities of other gradient following methods, even without complying with 

Y 
0.50 

0.20 

-O.lO i 

- 0 . 1 0  1.10 ' o . l o  ' o..~o ' o .~o  

Fig. 9. IRCsjoining the golf pocket holes on the PES z = x 2 + 4y 2 projected onto the plane. 
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Fig. 10. PES z = x 2 + 4y 2 modified by the golf pocket holes showing the embedded IRCs. 

the requirement of analyticity of the energy function. However, although the 
D D R P  method can still be used if analyticity is not fulfilled, the RP cannot gener- 
ally be approximated with the same theoretical accuracy in higher order as in the 
analytical case and we may count with some even stranger consequences if the 
energy function is not analytic. In section 2.2 the general theoretical conditions of 
convergence acceleration have been discussed. It seems that all known global meth- 
ods different from ours try to approximate phase curves in ways which could be 
obtained by some version of the modified D D R P  algorithm described in ref. [4]. 
Section 2.3 presents a mathematically complete formulation of the Murrell-  
Laidler argument [20]. Although their proof can be considered almost perfect, it 
did not deal with existence problems. The D D R P  method supplies the missing links. 
The study of golf pocket holes in section 2.4 serves to point out essential disadvan- 
tages of local methods with respect to global ones. Namely, if the energy function 
cannot be reconstructed from its arbitrarily small piece as is the case with, e.g., 
Taylor series of analytic functions (this may happen even to functions differentiable 
infinitely many times), then local RP-following [ 19,23] can be misleading. Unfortu- 
nately, such circumstances have usually not been treated by rigorous theoretical 
thoroughness, and to our knowledge, the possibility that the occurrences of e ~-  
smooth perturbations may reorganize the structure of reaction surface has only 
been investigated in this present article. Note that the golf-hole construction is per- 
haps only the simplest way to produce counterexamples, and more sophisticated 



392 L.L. Stach6, M.I. Btin / Theoretical implications of  the DDRP method 

non-analyt ic  constructions can be given whose chemical relevance is not  excluded. 
Numerica l  calculations with piecewise different analytic formulas (typical itera- 
tions using different lengths) may  produce an effect similar to non-analyt ic  pertur- 
bations. It seems some pars  pro  toto principle is required in order  that  the PES 
could be searched reliably by local methods.  The early successes of  local methods  
m a y  indicate that  for real chemical energy functions the pars  p ro  toto principle 
actually prevails. However,  this fact, to our knowledge, has not  been proved 
al though it would be very important  to have it done. Owing to the 2D nature  of  the 
test functions investigated so far, it can also be conceived that  the golf-hole paradox 
discussed above cannot  occur at all if starting f rom a SP. This is, nevertheless, 
strictly the peculiarity of  2D cases. I f  a golf hole exists, e.g., at some place of  the 
PES, f rom that  point a new RP could always be issued toward  a SP and there is no 
reason why this new RP could be followed by any conventional  local method,  while 
we can prescribe for most  global methods that  a RP, joining the bo t tom of  the 
golf  hole with the SP, should be obtained. After  all, we can state that  our  global 
D D R P  method  is superior even to other global gradient following methods,  at least 
in its r igorous mathemat ica l  foundation,  its high stability, versatility and easy 
parallelizability. 

It must  be emphasized that  the above conclusions have been drawn on the basis 
o f  mere mathemat ica l  considerations. Nevertheless, it is fairly obvious to assume 
that  the chemical PESs also comply with appropriate theoretical t reatments  based 
on substantiated mathemat ica l  theorems, therefore, the "implications involved in 
the D D R P  me thod"  are hopefully not  the results of  abstract  reasoning solely. 
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